

Application of central composite design for optimization of the removal of humic substances using coconut copra

The objective of this research paper is to evaluate the optimum conditions for the removal of humic substances from peat swamp runoff using modified coconut copra by applying Design of experiments (DoE) methodology.

The factors (independent variables) examined are: X_1 = dosage (g), X_2 = contact time (min) and X_3 = temperature ($^{\circ}\text{C}$). All the factors are continuous. The response (dependent variable) examined is: Y = removal efficiency (%). The applied DoE method is Inscribed Central Composite design.

Isalos version used: 2.0.6

Scientific article: <https://link.springer.com/article/10.1007/s40090-015-0041-0>

Step 1: Central Composite Design

In the first tab named “Action” define the factors in the column headers and fill each column with the low and high levels of the corresponding factors. This tab can be renamed “CCI”. Afterwards, apply the Inscribed Central Composite method: DOE → Response Surface → Central Composite

	Col1	Col2 (I)	Col3 (I)	Col4 (I)
User Header	User Row ID	X_1	X_2	X_3
1		1	15	30
2		5	60	70

DoE Central Composite

Number of Center Points per Block: 6

Number of Replicates: 1

Number of Blocks: 1

Random Standard order

Select Design: cci

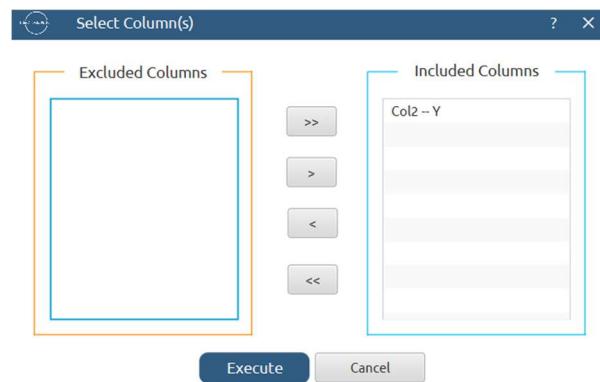
Select alpha method: rotatable

Excluded Columns

Included Columns

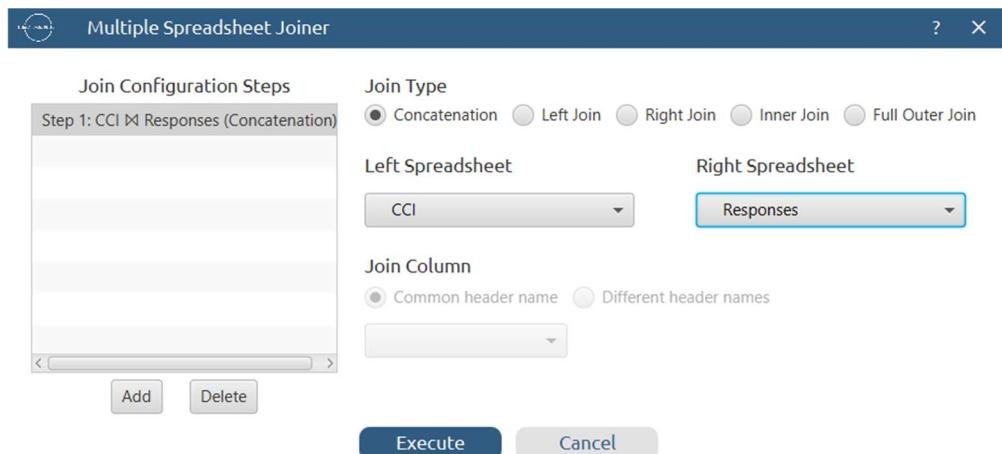
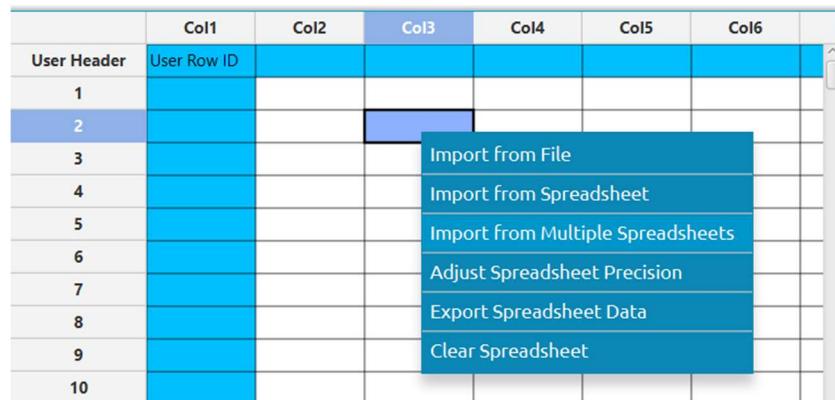
Excluded Columns: (empty)

Included Columns: $\text{Col2} - X_1$, $\text{Col3} - X_2$, $\text{Col4} - X_3$


Results (right spreadsheet):

	Col1	Col2 (I)	Col3 (S)	Col4 (S)	Col5 (S)	Col6 (D)	Col7 (D)	Col8 (D)
User Header	User Row ID	Standard Order	Block Number	Replicate Number	Point Type	X1	X2	X3
1		1	Block: 1	Replicate: 1	Design Point	1.8107929	24.1214200	38.1079288
2		2	Block: 1	Replicate: 1	Design Point	4.1892071	24.1214200	38.1079288
3		3	Block: 1	Replicate: 1	Design Point	1.8107929	50.8785800	38.1079288
4		4	Block: 1	Replicate: 1	Design Point	4.1892071	50.8785800	38.1079288
5		5	Block: 1	Replicate: 1	Design Point	1.8107929	24.1214200	61.8920712
6		6	Block: 1	Replicate: 1	Design Point	4.1892071	24.1214200	61.8920712
7		7	Block: 1	Replicate: 1	Design Point	1.8107929	50.8785800	61.8920712
8		8	Block: 1	Replicate: 1	Design Point	4.1892071	50.8785800	61.8920712
9		9	Block: 1	Replicate: 1	Design Point	1.0	37.5	50.0
10		10	Block: 1	Replicate: 1	Design Point	5.0	37.5	50.0
11		11	Block: 1	Replicate: 1	Design Point	3.0	15.0	50.0
12		12	Block: 1	Replicate: 1	Design Point	3.0	60.0	50.0
13		13	Block: 1	Replicate: 1	Design Point	3.0	37.5	30.0
14		14	Block: 1	Replicate: 1	Design Point	3.0	37.5	70.0
15		15	Block: 1	----	Center Point	3.0	37.5	50.0
16		16	Block: 1	----	Center Point	3.0	37.5	50.0
17		17	Block: 1	----	Center Point	3.0	37.5	50.0
18		18	Block: 1	----	Center Point	3.0	37.5	50.0
19		19	Block: 1	----	Center Point	3.0	37.5	50.0
20		20	Block: 1	----	Center Point	3.0	37.5	50.0

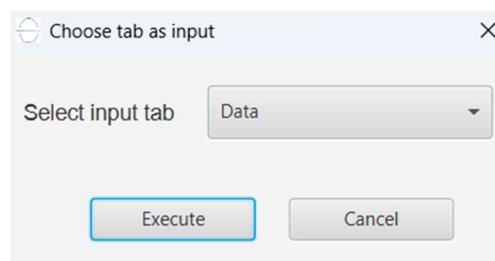
Step 2: Definition of response variables



Create a new tab named “Responses” and define the responses in the column headers. Fill each column with the values of the corresponding responses that were observed and make sure the values follow the order of the experiments as given by the Inscribed Central Composite method. Then, select all columns to be transferred to the right spreadsheet: Data Transformation → Data Manipulation → Select Column(s)

	Col1	Col2 (D)
User Header	User Row ID	Y
1		55.8
2		81.07
3		59.39
4		79.01
5		60.74
6		84.94
7		60.36
8		85.53
9		40.05
10		89.03
11		69.71
12		79.93
13		72.13
14		73.46
15		78.08
16		78.19
17		77.98
18		80.41
19		80.3
20		80.23

Step 3: Data isolation

Create a new tab named “Data” and import the results from the “CCI” and “Responses” spreadsheets by right clicking on the left spreadsheet. Then, select only the factors and responses columns to be transferred to the right spreadsheet: [Data Transformation](#) → [Data Manipulation](#) → [Select Column\(s\)](#)


Results:

	Col1	Col2 (D)	Col3 (D)	Col4 (D)	Col5 (D)
User Header	User Row ID	X1	X2	X3	Y
1		1.8107929	24.1214200	38.1079288	55.8
2		4.1892071	24.1214200	38.1079288	81.07
3		1.8107929	50.8785800	38.1079288	59.39
4		4.1892071	50.8785800	38.1079288	79.01
5		1.8107929	24.1214200	61.8920712	60.74
6		4.1892071	24.1214200	61.8920712	84.94
7		1.8107929	50.8785800	61.8920712	60.36
8		4.1892071	50.8785800	61.8920712	85.53
9		1.0	37.5	50.0	40.05
10		5.0	37.5	50.0	89.03
11		3.0	15.0	50.0	69.71
12		3.0	60.0	50.0	79.93
13		3.0	37.5	30.0	72.13
14		3.0	37.5	70.0	73.46
15		3.0	37.5	50.0	78.08
16		3.0	37.5	50.0	78.19
17		3.0	37.5	50.0	77.98
18		3.0	37.5	50.0	80.41
19		3.0	37.5	50.0	80.3
20		3.0	37.5	50.0	80.23

Step 4: Normalization

Create a new tab named “Normalized data” and import the results from the “Data” spreadsheet. Afterwards, normalize the factor columns to take values in the range [-1, 1]: [Data Transformation → Normalizers → Min-Max](#)

User Header	Col1	Col2	Col3	Col4	Col5	Col6
User Header	User Row ID					
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						

Results:

User Header	Col1	Col2 (D)	Col3 (D)	Col4 (D)	Col5 (D)
User Header	User Row ID	X1	X2	X3	Y
1		-0.5946036	-0.5946036	-0.5946036	55.8
2		0.5946036	-0.5946036	-0.5946036	81.07
3		-0.5946036	0.5946036	-0.5946036	59.39
4		0.5946036	0.5946036	-0.5946036	79.01
5		-0.5946036	-0.5946036	0.5946036	60.74
6		0.5946036	-0.5946036	0.5946036	84.94
7		-0.5946036	0.5946036	0.5946036	60.36
8		0.5946036	0.5946036	0.5946036	85.53
9		-1.0	0.0	0.0	40.05
10		1.0	0.0	0.0	89.03
11		0.0	-1.0	0.0	69.71
12		0.0	1.0	0.0	79.93
13		0.0	0.0	-1.0	72.13
14		0.0	0.0	1.0	73.46
15		0.0	0.0	0.0	78.08
16		0.0	0.0	0.0	78.19
17		0.0	0.0	0.0	77.98
18		0.0	0.0	0.0	80.41
19		0.0	0.0	0.0	80.3
20		0.0	0.0	0.0	80.23

Step 5: Regression – Linear

The goal here is to produce a regression equation that includes only the main effects for the response variable Y : $Y = b_0 + b_1X_1 + b_2X_2 + b_3X_3$

Create a new tab named “Regression – Linear” and import the results from the spreadsheet “Normalized data”. Afterwards, fit a generalized linear model to the data: Analytics → Regression → Statistical fitting → Generalized Linear Models

Generalized Linear Models Regression

Type: Linear

Confidence Level...: 95

Scale Parameter Method: Fixed value

Dependent Variable: Col5 -- Y

Value: 1.0

Excluded Columns

Factors

Covariates: Col2 -- X1, Col3 -- X2, Col4 -- X3

Custom (radio button selected)

Include All Main Effects

Full Factorial

Formula: X1+X2+X3

Execute Cancel

Results:

Y	Prediction
55.8	57.6399695
81.07	83.5074511
59.39	60.4118996
79.01	86.2793812
60.74	60.3546188
84.94	86.2221004
60.36	63.1265489
85.53	88.9940305
40.05	51.5651275
89.03	95.0688725
69.71	70.9860939
79.93	75.6479061
72.13	71.0342612
73.46	75.5997388
78.08	73.3170000
78.19	73.3170000
77.98	73.3170000
80.41	73.3170000
80.3	73.3170000
80.23	73.3170000

Goodness of Fit	Value
Deviance	494.5088236
Scaled Deviance	494.5088236
Pearson Chi-Square	494.5088236
Scaled Pearson Chi-Square	494.5088236
Log Likelihood	-265.6331825
Akaike's Information Criterion (AIC)	539.2663649
Finite Sample Corrected AIC (AICC)	541.9330316
Bayesian Information Criterion (BIC)	543.2492940
Consistent AIC (CAIC)	547.2492940

Parameter Estimates							
Variable	Coefficient	Std. Error	Lower CI	Upper CI	Test Statistic	df	p-value
intercept	73.3170000	0.2236068	72.8787387	73.7552613	107507.6497800	1	0.0
X1	21.7518725	0.4550899	20.8599128	22.6438323	2284.5411231	1	0.0
X2	2.3309061	0.4550899	1.4389464	3.2228658	26.2334394	1	3E-7
X3	2.2827388	0.4550899	1.3907791	3.1746985	25.1604339	1	5E-7

Step 6: Regression – Interactions

The goal here is to produce a regression equation that includes main effects and two-factor interactions for the response variable Y:

$$Y = b_0 + b_1X_1 + b_2X_2 + b_3X_3 + b_{12}X_1X_2 + b_{13}X_1X_3 + b_{23}X_2X_3$$

Create a new tab named “Regression – Int” and import the results from the spreadsheet “Normalized data”. Afterwards, fit a generalized linear model to the data: [Analytics → Regression → Statistical fitting → Generalized Linear Models](#)

Generalized Linear Models Regression

Type: Linear

Confidence Level...: 95

Dependent Variable: Col5 -- Y

Scale Parameter Method: Fixed value

Value: 1.0

Excluded Columns

Factors

Covariates: Col2 -- X1, Col3 -- X2, Col4 -- X3

Formula: X1+X2+X3+X1:X2+X1:X3+X2:X3

Custom (radio button selected)

Include All Main Effects

Full Factorial

Execute Cancel

Results:

Y	Prediction		
55.8	57.4499695	Goodness of Fit	
81.07	83.3674511		Value
59.39	61.7218996	Deviance	489.0444236
79.01	85.2993812	Scaled Deviance	489.0444236
60.74	59.3746188	Pearson Chi-Square	489.0444236
84.94	87.5321004	Scaled Pearson Chi-Square	489.0444236
60.36	62.9865489	Log Likelihood	-262.9009825
85.53	88.8040305	Akaike's Information Criterion (AIC)	539.8019649
40.05	51.5651275	Finite Sample Corrected AIC (AICC)	549.1352983
89.03	95.0688725	Bayesian Information Criterion (BIC)	546.7720908
69.71	70.9860939	Consistent AIC (CAIC)	553.7720908
79.93	75.6479061		
72.13	71.0342612		
73.46	75.5997388		
78.08	73.3170000		
78.19	73.3170000		
77.98	73.3170000		
80.41	73.3170000		
80.3	73.3170000		
80.23	73.3170000		

Parameter Estimates							
Variable	Coefficient	Std. Error	Lower CI	Upper CI	Test Statistic	df	p-value
intercept	73.3170000	0.2236068	72.8787387	73.7552613	107507.6497800	1	0.0
X1	21.7518725	0.4550899	20.8599128	22.6438323	2284.5411231	1	0.0
X2	2.3309061	0.4550899	1.4389464	3.2228658	26.2334394	1	3E-7
X3	2.2827388	0.4550899	1.3907791	3.1746985	25.1604339	1	5E-7
X1*X3	1.5839192	1.0000000	-0.3760448	3.5438832	2.5088000	1	0.1132121
X1*X2	-1.6546299	1.0	-3.6145939	0.3053341	2.7378000	1	0.0979996
X2*X3	-0.4666905	1.0	-2.4266545	1.4932735	0.2178000	1	0.6407213

Step 7: Regression – Quadratic

The goal here is to produce a regression equation that includes main effects, two-factor interactions and quadratic effects for the response variable Y:

$$Y = b_0 + b_1X_1 + b_2X_2 + b_3X_3 + b_{12}X_1X_2 + b_{13}X_1X_3 + b_{23}X_2X_3 + b_{11}X_1^2 + b_{22}X_2^2 + b_{33}X_3^2$$

Create a new tab named “Regression – Quad” and import the results from the spreadsheet “Normalized data”. Afterwards, fit a generalized linear model to the data: Analytics → Regression → Statistical fitting → Generalized Linear Models

Generalized Linear Models Regression

Type: Linear

Confidence Level...: 95

Scale Parameter Method: Fixed value

Dependent Variable: Col5 -- Y

Value: 1.0

Excluded Columns

Factors

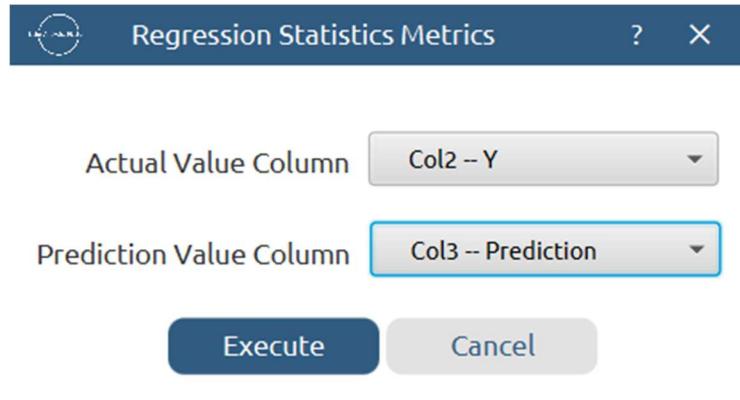
Covariates: Col2 -- X1, Col3 -- X2, Col4 -- X3

Custom Include All Main Effects Full Factorial

Formula: X1+X2+X3+X1:X1+X2:X2+X3:X3+X1:X2+X1:X3+X2:X3

Execute Cancel

Results:


Y	Prediction
55.8	54.7280537
81.07	80.6455352
59.39	58.9999838
79.01	82.5774653
60.74	56.6527029
84.94	84.8101845
60.36	60.2646330
85.53	86.0821146
40.05	43.1557040
89.03	86.6594491
69.71	72.8566705
79.93	77.5184827
72.13	70.8798378
73.46	75.4453154
78.08	79.1773113
78.19	79.1773113
77.98	79.1773113
80.41	79.1773113
80.3	79.1773113
80.23	79.1773113

Goodness of Fit	Value
Deviance	75.2317139
Scaled Deviance	75.2317139
Pearson Chi-Square	75.2317139
Scaled Pearson Chi-Square	75.2317139
Log Likelihood	-55.9946276
Akaike's Information Criterion (AIC)	131.9892552
Finite Sample Corrected AIC (AICC)	156.4336997
Bayesian Information Criterion (BIC)	141.9465779
Consistent AIC (CAIC)	151.9465779

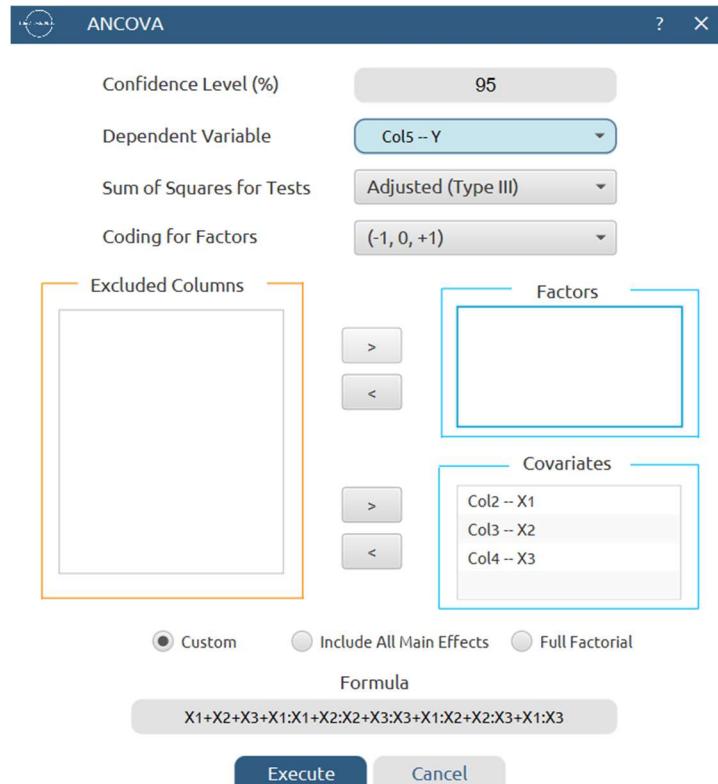
Parameter Estimates							
Variable	Coefficient	Std. Error	Lower CI	Upper CI	Test Statistic	df	p-value
intercept	79.1773113	0.4078483	78.3779433	79.9766792	37688.0971269	1	0.0
X1	21.7518725	0.4550899	20.8599128	22.6438323	2284.5411231	1	0.0
X2	2.3309061	0.4550899	1.4389464	3.2228658	26.2334394	1	3E-7
X3	2.2827388	0.4550899	1.3907791	3.1746985	25.1604339	1	5E-7
X1*X3	1.5839192	1.0000000	-0.3760448	3.5438832	2.5088000	1	0.1132121
X1*X2	-1.6546299	1.0	-3.6145939	0.3053341	2.7378000	1	0.0979996
X2*X3	-0.4666905	1.0	-2.4266545	1.4932735	0.2178000	1	0.6407213
X1*X1	-14.2697347	0.7450640	-15.7300332	-12.8094362	366.8129730	1	0.0
X2*X2	-3.9897347	0.7450640	-5.4500332	-2.5294362	28.6748349	1	1E-7
X3*X3	-6.0147347	0.7450640	-7.4750332	-4.5544362	65.1697180	1	0E-7

Step 8: Regression Metrics

Create a tab named “Metrics – Linear” and import the results from the spreadsheet “Regression – Linear”. Then, produce the regression metrics for the linear regression equation: Statistics → Model Metrics → Regression Metrics

Results:

	Col1	Col2 (D)	Col3 (D)	Col4 (D)	Col5 (D)
User Header	User Row ID	Mean Squared Error	Root Mean Squared Error	Mean Absolute Error	R Squared
1		24.7254412	4.9724683	4.1051214	0.8252893

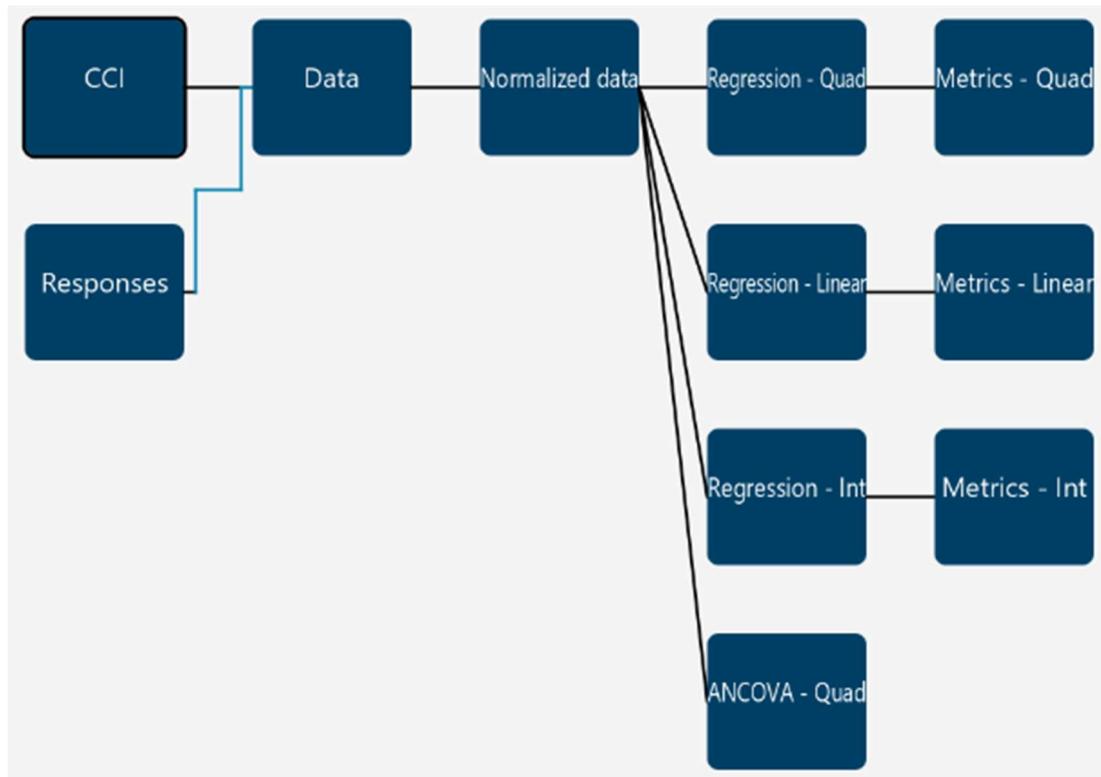

Repeat this step for the interactions and quadratic regression equations. Results:

	Col1	Col2 (D)	Col3 (D)	Col4 (D)	Col5 (D)
User Header	User Row ID	Mean Squared Error	Root Mean Squared Error	Mean Absolute Error	R Squared
1		24.4522212	4.9449187	4.2031214	0.8272199

	Col1	Col2 (D)	Col3 (D)	Col4 (D)	Col5 (D)
User Header	User Row ID	Mean Squared Error	Root Mean Squared Error	Mean Absolute Error	R Squared
1		3.7615857	1.9394808	1.5639204	0.9734205

Step 9: Analysis of Covariance

Create a new tab named “ANCOVA – Quad” and import the results from the spreadsheet “Normalized data”. Afterwards perform analysis of covariance for Y using the formula for the quadratic equation:
Statistics → Analysis of (Co)Variance → ANCOVA



Results:

	Col1	Col2 (S)	Col3 (I)	Col4 (D)	Col5 (D)	Col6 (D)	Col7 (D)
User Header	User Row ID	Source	DF	Adj SS	Adj MS	F-Value	P-Value
1		X1	1	2284.5411231	2284.5411231	303.6672974	0E-7
2		X2	1	26.2334394	26.2334394	3.4870187	0.0914042
3		X3	1	25.1604339	25.1604339	3.3443920	0.0973718
4		X1*X1	1	366.8129730	366.8129730	48.7577584	0.0000379
5		X2*X2	1	28.6748349	28.6748349	3.8115355	0.0794427
6		X3*X3	1	65.1697180	65.1697180	8.6625327	0.0147043
7		X1*X2	1	2.7378000	2.7378000	0.3639157	0.5597725
8		X1*X3	1	2.5088000	2.5088000	0.3334764	0.5763892
9		X2*X3	1	0.2178000	0.2178000	0.0289506	0.8682863
10		Error	10	75.2317139	7.5231714		
11		Total	19	2830.4438200			

Final Isalos Workflow

The final workflow is presented below:

References

- (1) Lee, T. Z. E.; Krongchai, C.; Mohd Irwn Lu, N. A. L.; Kittiwachana, S.; Sim, S. F. Application of Central Composite Design for Optimization of the Removal of Humic Substances Using Coconut Copra. *Int J Ind Chem* **2015**, 6 (3), 185–191. <https://doi.org/10.1007/s40090-015-0041-0>.